AE 4791 - Mechanical Behavior of Composites

Hours: 3-0-3

CATALOG DESCRIPTION (25 words or fewer):

Stress-strain behavior of composites, properties of matrix and reinforcing materials, mechanics of fiber-reinforced composites, lamina and laminate analysis, and mechanical performance.

PREREQUISITES:

COE3001 Mechanics of Deformable Bodies

COURSE OBJECTIVES: Provide students with a basic understanding of the composition and uses of composite materials, their structural and mechanical properties, and the capability to perform basic analysis of the mechanical response of composite materials.

LEARNING OUTCOMES:

1) Students will develop an understanding of what constitutes a composite material:

- 1.1) a basic understanding of what a composite material consists of, how it behaves, suitable applications, and limitations;
- 1.2) an understanding of how the structure and mechanical properties of the constituent materials affect the mechanical properties of the composite.

2) Students will gain a working knowledge on mechanical behavior of composite materials, mainly on fiber reinforced polymers. Students will demonstrate:

- 2.1) the ability to apply basic principles of mechanics to composite materials;
- 2.2) understanding of how to predict the mechanical response of a composite material under hydrothermal and mechanical loadings;
- 2.3) the ability to select raw materials for a lamina, chose the proper stacking sequence of laminas, and design a laminated composite structure using software to best suit specific applications;
- 2.4) the ability to find information, summarize, comment, and critique studies on a specific topic related to mechanics of composites and the ability to write technical reports.

TOPICAL OUTLINE:

- I. Introduction to composites including advantages, disadvantages, and applications
- II. Materials: Fibers and fillers, surface treatment of fibers, fiber content, density, voids
- III. Materials: Polymer matrix, metal matrix, and ceramic matrix
- IV. Mechanics of unidirectional lamina (continuous or discontinuous fibers), including longitudinal and transverse tensile modulus, compressive strength and impact
- V. Micromechanics
- VI. Characteristics of a fiber-reinforced lamina
- VII. Engineering constants for orthotropic materials, plane stress
- VIII. Invariant properties, strengths of an orthotropic lamina
- IX. Laminated structure, interlaminar stresses, macromechanical behavior of a laminate
- X. Classical lamination theory
- XI. Performance: Static, tension, compression, shear, flexure
- XII. Fatigue
- XIII. Impact and other properties
- XIV. Joining: Pin bearing, adhesive bonding
- XV. Design for long term properties
- XVI. Conception and design of laminated composite structures