AE 4803–Advanced Aircraft Propulsion

Hours: 3-0-3

CATALOG DESCRIPTION:

Turbomachinery and combustor design, compressor-turbine matching and off-design engine performance. Introduction to advanced propulsion architectures including scramjets, pressure gain combustion, and electric/hybrid-electric.

PREREQUISITES:

AE 4451

TEXTBOOKS (SUGGESTED):

Mechanics and Thermodynamics of Propulsion, 2nd Edition, Philip Hill and Carl Peterson, Addison-Wesley, 1992. *Aircraft Propulsion*, S. Farokhi, Wiley, 2009. <u>Additional sources</u>: *Gas Turbine Combustion*, 3rd Edition, A. Lefebvre and D. Ballal, CRC Press, 2010.

COURSE OBJECTIVES:

- 1. Familiarize students with the preliminary design and analysis of turbomachinery components found in conventional aircraft engines: compressors and turbines.
- 2. Explore the concept and procedures for compressor-turbine (gas generator) matching and provide understanding of off-design performance of an engine based on compressor and turbine maps.
- 3. Familiarize students with the preliminary design and analysis of main combustor found in conventional aircraft engines.
- 4. Introduce students to advanced propulsion architectures for hypersonic aircraft, and for enhanced cycle efficiency or reduced fuel-consumption in subsonic or transonic aircraft.

LEARNING OUTCOMES:

Students will be able to:

- 1. Provide preliminary design parameters for compressors and turbines and characterize their performance based on a mean line approach.
- 2. Evaluate the operation and performance of a jet engine based on compressor and turbine maps for different operating conditions.
- 3. Provide preliminary design parameters and define key design issues, constraints and architectures for main combustors in jet engines.
- 4. Describe the advantages and drawbacks of various advanced propulsion architectures.

LEARNING ACCOMMODATIONS:

If needed, we will make classroom accommodations for students with documented disabilities. These accommodations must be arranged in advance and in accordance with the Office of Disability Services. (http://disabilityservices.gatech.edu).

ACADEMIC INTEGRITY:

Academic dishonesty is not tolerated. This includes cheating, lying about course matters, plagiarism, or helping others commit a violation of the Honor Code. Plagiarism includes reproducing the words or visual/graphical expressions of others without clear attribution and citation. Students are reminded of the obligations and expectations associated with the Georgia Tech Academic Honor Code, available online at http://osi.gatech.edu/content/honor-code.

TOPICAL OUTLINE:

Торіс	Lecture Hours
I. Aircraft Propulsion Review	2
A. Engine architectures	1
B. Performance characteristics	1
II. Turbomachinery Design and Analysis	13
A. Axial architectures, Euler equations and cascade nomenclature	2
B. Mean line design of compressors and compressor performance	51/2
 Cascade flow angles and velocity triangles Single-stage compressor characteristics Blade design considerations Multistage compressors 	
C. Mean line design of turbines and turbine performance	31/2
1. Overview, Euler equations and maps	
 Degree of reaction Stage inlet swirl, solidity, losses and other design requirements Blade and disk stresses 	
D. Compressor and turbine design point procedures	2
III. Engine Off-Design Performance	6
A. Gas turbine matching requirements and map scaling	1
B. Gas generator matching for off-design performance	2
C. Engine off-design performance	11/2
D. Engine transient response	1/2
IV. Combustor Design	10
A. Overview: requirements and rationale for typical features	2
B. Inlet diffuser sizing & losses, combustor length scaling	1
C. Fuel atomization and evaporation	2
D. Ignition	1
E. Aerodynamics and swirl	2
F. Controlling emissions	1/2
G. Heat transfer and liner cooling	11/2
V. Advanced Propulsion Architectures	7
A. Scramjets	3
B. Pressure gain combustion approaches	1
C. Electric and hybrid electric propulsion	3
Exams and reviews Total	4 42